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The ubiquitous presence of river drainage basins in the terrestrial environment sug- 
gests that distributed overland flow generated by rainfall tends to spontaneously 
organize itself into dendritic systems of discrete channels. Several recent numerical 
models describe the evolution of complete drainage basins from the initial condition 
of rainfall on a flat, tilted plateau, the surface of which has been provided with ran- 
dom elevation perturbations. These analyses model overland flow via the assumption 
of a perfect balance between gravitational and frictional terms, i.e. in terms of normal 
flow. 

Linear stability analysis applied to the normal flow model has been shown, however, 
to fail to select a wavelength corresponding to a finite distance of separation between 
incipient basins. This suggests that the normal flow model may not be a sufficient basis 
for studying drainage basin development, especially at the finest scales of morphologic 
significance. 

Here the concept of a threshold condition for bed erosion is combined with an 
analysis of the full equations of shallow overland flow in order to study wavelength 
selection. Classical linear stability analysis is shown to be inadequate to analyse the 
problem at the level of inception. An alternative linear analysis of bed perturbations 
based on the threshold condition is developed, and shown to lead to the selection of 
finite wavelength of the correct order of magnitude. 

The analysis here is driven from the upstream direction in that bed erosion is 
first caused only when sufficient flow has gathered from upstream due to rainfall. A 
downstream-driven theory of incipient channelization that is not necessarily depen- 
dent upon rainfall is presented in Izumi (19931, and is presently in preparation for 
publication. 

1. Introduction 
Dendritic river drainage basins can be found everywhere on the terrestrial surface 

of the Earth where rainfall is sufficient. They constitute the dominant mechanism 
for the conveyance of rainwater to the oceans. The issue of their formation and 
structure has been of interest at least since the time of Horton (1945) and Strahler 
(1958). More recent work by Abrahams (1984), Sawai, Ashida & Tmamoto (1986) 
and Howard (1990) is also of interest. 
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Contour interval = 40 ft I I f  K!-- 
FIGURE 1. Map of the channel network (heavy solid lines), areas of thick colluvium (stippled area) 
and thick valley floor deposits of colluvium and alluvium (shaded area) near the headwaters of 
the Tennessee Valley drainage basin of Marin County, California. (Courtesy W. E. Dietrich; from 
Dietrich et al. 1993). 

In the absence of dendritic networks of discrete streams, runoff resulting from 
rainfall would take the form of a very shallow, broad overland flow. The ubiquitous 
presence of such networks suggest, however, that overland flow over a flat, erodible 
tilted land surface is in some sense unstable over length scales beyond a given size. 
That is, it may be hypothesized that drainage basins are spontaneously self-organizing 
in a way that limits the scale over which unchannelized overland flow can occur. 

The replacement of a full drainage basin with a flat, sloping surface, and the 
subsequent reinstatement of the drainage basin, can in general only be performed 
as a thought experiment. It is, however, possible to study the finest scales of 
existing drainage basins. The example of Tennessee Valley, California (Montgomery 
& Dietrich 1989), shown in figure 1, is of interest in this regard. The finest scale 
characterizing the basin itself appears to be the distance between first-order tributaries 
at their headwaters. This scale is seen to be of the order of 100 m. Montgomery & 
Dietrich (1989) have in fact found a mean spacing between heads of 82 m for the 
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FIGURE 2. Rhythmic topography associated with channel heads on the east slopes of the Coast 
Range near Orland, California. 

Hay Press tributary, and 81 m for the Sausalito tributary of the Tennessee Valley 
network. Dietrich & Dunne (1993) have found the following mean spacings between 
channel heads for three other river basins: Rock Creek, Oregon, 129 m; Southern 
Sierras, California, 110 m; and San Dimas, California, 64 m. 

In a few cases, the topography associated with the headwaters of tributaries is 
particularly simple. An example is the topography along the east slope of the Coast 
Range of California near the town of Orland shown in figure 2. First-order tributaries 
are seen to run parallel to each other, each with its headwaters near a long divide 
running perpendicular to the channels. The spacing between adjacent headwater 
zones is again found to be of the order of 100 m. The rhythmic nature of the 
topography strongly suggests that the pattern of channels is the result of a flow- 
sediment interaction, the inception of which can be explained in terms of stability 
analysis. 

A possible framework for such an analysis is shown in figure 3. A flat, tilted surface 
with slope S continues infinitely downstream of a divide. This surface is then provided 
with a transversely undulating topography of infinitesimal amplitude consisting of 
alternating troughs and ridges with an arbitrary wavelength of separation A. The 
surface is subjected to rainfall and allowed to erode. The issue of interest, then is the 
selection of a characteristic wavelength of undulation, which would then provide a 
first estimate for the smallest characteristic scale of the drainage basin. 

In recent years, it has become possible to model numerically the evolution of 
entire drainage basins. In the treatment of Roth & Siccardi (1989), for example, a 
flat, tilted surface is provided with random perturbations and subjected to rainfall. 
The resulting overland flow is modelled according to the normal flow hypothesis, 
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FIGURE 3. (a)  Schematic diagram defining the base state. A flat but tilted plateau with slope S is 
subjected to a rainfall of intensity Z (volume/area/time), which creates a sheet flow the intensity of 
which increases in the downstream ( y )  direction. The parameter Lth denotes the distance downstream 
of the divide at which the bed first starts to erode. ( b )  The base state is perturbed so as to render it 
wavy in the transverse (x) direction. The perturbation has wavelength 1. The dashed line denotes 
the line y = Lth. The adjacent solid line defines the distance downstream of the divide at which 
the threshold condition for bed erosion is reached in the presence of perturbations. Note that this 
distance is assumed to be shorter in the troughs than along the ridges. The parameter A f t  denotes 
the distance upstream of the point y = Lth at which erosion first occurs in the troughs in the 
presence of the perturbations. 

according to which the vector of flow resistance is in perfect balance with the 
vectorial force of gravity associated with the tilted topography. An appropriate 
relation for sediment transport is specified, and the bed is allowed to evolve in 
accordance with sediment continuity. When resulting topographic lows are connected 
in the downstream direction, the result has the distinct appearance of the early stages 
of drainage basin formation. 
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While the numerical model of Roth & Siccardi (1989) does not go beyond the early 
stages, that of Willgoose, Bras & Rodriguez-Iturbe (1989, 1991 a, b)  allows for the 
evolution of fully developed drainage basins in their entirety. They accomplish this 
by adapting a model for leaf vein formation to the problem. They treat the transition 
from unchannelized overland to channel in terms of an analogy to catalyzed chemical 
reactions (Meinhardt 1982). Their model of sediment transport is similar to that of 
Roth & Siccardi (1989) in that it is transportational in nature. Howard (1994) has 
responded to their inspiring work by devising a purely erosional treatment of overland 
flow with a minimum of assumptions, and in particular with no assumptions based 
on analogies to physically different problems. This model is also capable of evolving 
complex, realistic drainage basins. 

A11 three of these numerical models rely on an initial tilted surface supplied with 
random perturbations, and treat the fluid phase in terms of simple normal flow. In one 
of the first theoretical treatments of the subject, however, Smith & Bretherton (1972) 
applied a linear stability analysis to the configuration of figure 3, and demonstrated 
that a transportational model based on normal flow is incapable of selecting finite 
wavelength. Rather, the dominant spacing tends to zero. Further work by Luke 
(1974) and Loewenherz (1991) confirms this result. Indeed, Loewenherz was obliged 
to introduce an ad-hoc ‘smearing function’ to prevent the tendency toward vanishing 
wavelength. 

A question arises, then, as regards the finest scale appearing in any of these models. 
If the model itself has no inherent mechanism for scale selection, the fine scale may 
simply result from numerical diffusion acting on the arbitrarily specified spectrum of 
fluctuations of the initially randomized bed. The resulting drainage basin pattern is 
rendered dependent upon the initial perturbations and the size on the numerical grid 
of the computation. 

The present treatment, then, is devoted to the issue of whether or not there is 
an inherent mechanism for wavelength selection that determines the finest scale of 
drainage basins. The reason for the failure of the normal flow model is elucidated, 
and the problem is resolved based upon a more general flow model. 

2. The threshold concept 
In recent years, the tools of linear and nonlinear stability analysis of erodible beds 

have been successfully used to determine the origin and characteristic of a variety of 
rhythmic morphologies, including dunes (Smith 1970; Engelund 1970; Fredsoe 1974; 
Richards 1980), alternate bars (Engelund & Skovgaard 1973; Parker 1976; Fredsoe 
1978; Colombini, Seminara & Tubino 1987; Schielen, Doelman & de Swart 1993), 
and meanders (Ikeda, Parker & Sawai 1981; Blondeaux & Seminara 1985; Tubino & 
Seminara 1990). 

These analyses allow the bed to deform and interact with the flow field in accordance 
with some slow time scale characterizing the rate of sediment transport. In a two- 
dimensional model of bed evolution, for example, the volume sediment transport rate 
per unit time per unit width is specified in terms of the vector (qsx, qsy) ;  here y denotes 
the downslope direction and x the transverse direction in accordance with figure 3. 
This vector is taken to be a function of boundary shear stress and other parameters. 
Bed deformation is modelled using the Exner equation of sediment continuity: 
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where q denotes bed elevation, t denotes time, and A, denotes bed porosity. The above 
relation is also used in Roth & Siccardi (1989) and Willgoose et al. (1989, 1991 a, b). 

In the model of Howard (1994), however, overland flow is assumed to be purely 
erosional; all material eroded by the flow is allowed to be carried downstream without 
deposition. This concept is often used to treat the erosion of cohesive material. The 
rate of erosion normal to the bed E is specified as a function of boundary shear stress 
and other parameters. The Exner equation is then formulated as 

- aq - E .  
at 1 - A, 

Common to either of these formulations is the existence of a threshold parameter 
below which sediment transport of erosion does not occur. This is usually specified in 
terms of a threshold shear stress. In the erosional model, for example, E may be taken 
to be a function of the magnitude 7 b  of the boundary shear stress vector ( z b x , z b y ) .  

A threshold shear stress z th  may then be introduced such that E is a monotonically 
increasing function of 7 b  for 7 b  > 7th,  and E vanishes for 7 b  < ~ ~ h .  

Montgomery & Dietrich (1989) have emphasized the role of at least three threshold 
parameters in the onset of channelization, one each for the processes of bed erosion by 
overland flow, daylighting of saturated groundwater flow, and mass movement. Here 
only the first of these is treated. Montgomery & Dietrich argue that overland flow 
over a vegetated, cohesive regolith has no chance of becoming channelized until it 
becomes intense enough to initiate the process of bed erosion. With this observation 
and the work of Howard (1994) as inspiration, a purely erosional model with a 
threshold shear stress is adopted here. It is furthermore specifically assumed that 

Relations of this type are common in the literature on the erosion of cohesive 
sediment, e.g. Partherniades (1965) and Ariathurai & Arulanandan (1978). 

The field work of Montgomery & Dietrich (1989), then, provides the conceptual 
basis for the present ‘upstream driven’ model : the rainfall-derived flow gathered from 
upstream of a point must be of sufficient magnitude to erode the bed if channelization 
is to start at that point. This concept can be expected to be valid for many but not 
all cases of incipient channelization. For example, the dendritic channel networks in 
tidal flats are likely formed from a point of lowered base level associated with low 
tide, which likely drives flow intensification and resultant incision. Rainfall is clearly 
not required for this process. 

A problem with any model, erosional or transportational, which incorporates a 
threshold for bed deformation is that classical stability analysis becomes invalid in 
the vicinity of the point where the threshold condition is reached. This is because 
neither E nor the vector (qx ,  q y )  is a smooth function of boundary shear stress in the 
vicinity of the threshold condition, so that neither is Taylor expandable. The idea is 
illustrated in figure 4, where q, is given as a function of transverse distance x at some 
distance y downstream of the divide in accordance with the bed perturbation of figure 
3. Erosion is seen to be discontinuous, so disallowing the continuous perturbations 
characteristic of classical stability analysis. 

Smith & Bretherton (1972) get around this problem simply by not introducing 
a threshold condition into their sediment transport relations. In some sense, then, 
their stability approach might be thought to be valid if downstream distance y is 
sufficiently large. In order to formulate this idea, consider the tilted surface in the 
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FIGURE 4. Diagram illustrating the transverse variation of boundary shear stress expected just 
downstream of the point y = Lth. Shear stress is above critical in some locations, but below critical 
in others, causing a discontinuous pattern of erosion. This feature renders the problem inappropriate 
for the methods of classical stability analysis. 

absence of transverse perturbations of figure 3(a). Flow strength increases with y due 
to rainfall, so that the threshold for bed erosion is reached at y = Lth. The model of 
Smith & Bretherton, then, is valid for values of y sufficiently in excess of Lth that E 
becomes Taylor expandable everywhere. 

If this same bed is perturbed by means of the transverse undulation of figure 3(b), 
flow will preferentially gather in the troughs, so that the threshold condition is 
attained slightly upstream of Lth in the troughs and slightly downstream in the ridges. 
It follows that channel formation should commence near y = Lth, and not at the larger 
distances at which the classical linear stability formulation of Smith & Bretherton 
(1972) might become valid. An alternative to classical linear stability analysis can 
thus be posed in the following form. Let A[, denote the distance upstream of the 
point y = Lth at which the threshold condition is attained in the troughs. In general, 
A t ,  can be expected to be a function of wavelength 2, or wavenumber k = 2n/l .  
At the linear level, the characteristic wavelength is here hypothesized to be the one 
such that erosion commences in the troughs in the shortest distance downstream 
of the divide. Minimizing this distance corresponds to maximizing Adt,  so that the 
wavelength selection criterion becomes 

The model of channelization implicit in this concept is illustrated in figure 5 . Chan- 
nelization commences when the threshold condition is first overcome. The incipient 
channels can be expected to gather water farther downstream, thus intensifying the 
tendency for channelization. In addition, the point of first erosion can be expected to 
form an upstream-migrating head cut. The present analysis is ‘upstream driven’ only 
in the sense that sufficient water derived from rainfall must have been gathered by 
the catchment upstream of an incipient channel to actually cause bed erosion. 

In order to simplify the analysis here, the transverse bed perturbation illustrated 
in figure 3(b) is assumed to be sinusoidal. Furthermore, the rainfall rate is assumed 
to be steady, corresponding to an extended steady precipitation event. Both these 
constraints could be relaxed in a more general treatment, but seem appropriate in the 
present first analysis. 
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FIGURE 5.  Expected pattern of incipient channelization resulting from 
the perturbation of figure 3(b). 

3. Flow equations 
In accordance with the usual quasi-steady assumption of erodible-bed flow prob- 

lems, it is assumed that the setup time upon commencement of rainfall to achieve a 
steady flow is small compared to the time required for significant erosion to occur. 
The flow equations are thus approximated as steady. 

Steady overland flow resulting from rainfall on a tilted plateau is thus considered. 
The depth-averaged St. Venant equations of shallow water flow provide an appropriate 
starting point for the analysis. The developed, dissected topographies of such existing 
basins as shown in figures 1 and 2 have relatively steep slopes near their headwaters. 
Here, however, the equations are applied to a hypothetical antecedent topography 
before dissection which has a relatively small slope, as described by figure 3. As 
shown in Izumi (1993), it is possible to include the Reynolds stresses associated with 
shear in the (x, y)-plane in an approximate way, so that the following equations result: 
streamwise momentum balance 

transverse momentum balance 

and mass balance 
Buh dvh 
- -+-=I.  ax ay (3.3) 

Here u denotes streamwise and u denotes transverse flow velocity, h denotes flow 
depth, I denotes the volume rainfall rate per unit time per unit bed area, here taken 
to be constant, ( Z b x , Z b y )  denotes the vector of boundary shear stress, vt denotes the 
eddy viscosity associated with shear in the plane of flow, g denotes the acceleration 
due to gravity, and p denotes water density. The flow is assumed fully turbulent, so 
that boundary shear stress is given by the following relations: 

(3.4a) 

(3.4b) 

where Cf is a friction coefficient, here taken to be constant for simplicity. Eddy 
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viscosity v t  is given as 

where u* denotes shear velocity, defined such that 
vt = au*h, (3.5) 

p u z = z b ;  z b =  (5 ix f5 iy )1 /2 .  (3.6a, b) 

The parameter a in ( 3 4 ,  although referring to momentum exchange, can be evaluated 
approximately with the aid of the literature on transverse mass exchange in channel 
flows, a summary of which can be found in Fischer et al. (1979). The information 
in Fischer et al. suggests values of a ranging from 0.1 to 0.3, in accordance with 
those used by Parker (1978) and Ikeda & Izumi (1991). Here the following simple 
approximation is used: 

a = 0.2. (3-7) 
The form of the bed perturbation illustrated in figure 3(b) can be expressed 

analytically as 

where q d  denotes the (constant) unperturbed elevation of the divide, S denotes the 
unperturbed streamwise slope, a denotes the amplitude of the surface perturbation, 
here taken to be infinitesimal, and wavenumber k = 2n/l, where A is the wavelength 
of separation of the incipient channels. Note that (3.8) implies that the lines x = 
0, *271/k, f4x/k,. . . correspond to troughs. Substituting (3.4) and (3.8) into (3.1) and 
(3.2), it is found that the relations for momentum balance reduce to 

= q d  - S y  - UCOSkx, (3.8) 

au av a h  (u’ + v’) I” 

ax ay ay  h ax 
u- + u- + g- = gS - c, 

and 

au a u  a h  ( 2.4’ + v’) l/’ 

h 
u-+u-+g- = -gaksinkx-Cf 

ax ay ax 

One boundary condition on the flow is that the water discharge per unit width 
must vanish at the divide of figure 3, 

(3.11) 

If (3.3), (3.9), and (3.10) are to be solved on a domain that is infinite in x, the solution 
must be perforce cyclic in x. It follows, then, that transverse velocity must vanish at 
the ridges and troughs. Applied to the trough at x = 0, this yields 

(3.12) 

Integrating (3.3) from ridge to ridge and applying the condition upon u at the ridges 
yields the compatibility relation 

(3.13) 

4. Base flow 
The base flow is defined by the flow over the surface configuration of figure 3(a). It 

is obtained from (3.3), (3.9), and (3.10) by setting a = 0 and dropping all dependency 
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upon x, so that u = 0, v = vo(y), and h = ho(y), where 

and 

An exact solution of (4.1) and (4.2) evidently requires one more boundary condition 
in addition to (3.11); this can be formulated in terms of vanishing Reynolds stress 
at the divide. It will be shown below, however, that it is not necessary to solve the 
equations for the base flow exactly. It suffices to start with the approximate base flow 
that results if the inertial and pressure terms, here called the backwater terms, and 
the Reynolds stress are dropped from (4.1). This flow is here termed the base normal 
flow, in that it represents a pure balance between the downstream gravitational force 
and the resisting force of bed friction. 

The base normal flow resulting from these approximations satisfies (3.11), (4.2), 
and the approximate relation for momentum balance 

4 n  0 = g s  - cf-, 
h b n  

(4-3) 

where the subscript bn refers to the base normal approximation of the base flow. 
These equations can be solved to yield 

and 

(4.4) 

An interesting feature of the solution is that the Froude number F of the flow, given 
by 

takes the constant value 

(4.6a) 

(4.6b) 

in the case of the base normal flow. The analysis is seen to be equally valid for 
subcritical as well as supercritical flow in the Froude sense; the base normal solution 
passes through no obvious singularity in the vicinity of F = 1. The only restriction 
placed on F here is that it should not be larger than O( 1). 

An a posteriori estimate of the neglected backwater and Reynolds stress terms can 
be obtained by substituting (4.4) and (4.5) into the appropriate terms in (4.1). This 
results in the estimates 

(4.7a) 

(4.7b) 
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FIGURE 6. Definition diagram illustrating the following base state parameters: distance downstream 
of the divide Lth for the onset of bed erosion, flow depth Hlh and velocity vth at y = Lth, the elevation 
drop SLth from the divide to the point of commencement of bed erosion, and the parameter v. 
Note that the slope has been exaggerated for clarity, This notwithstanding, the justification for the 
assumption of small tp should be clear from the geometry. 

The implication is that these terms are indeed small sufficiently far downstream of 
the divide. This result is placed on a more rigorous basis below. 

The base normal flow can now be used to define the characteristic scales shown in 
figure 6.  The streamwise flow velocity I / t h  at which the threshold condition is reached 
is found from (3.4) and (3.6) to satisfy the relation 

The momentum balance of the base normal flow, (4.3), requires that 

cfv:h = gHths, (4.9) 

where Hth denotes the flow depth at threshold conditions. Finally, the distance 
Lth downstream of the divide at which the base normal flow reaches the threshold 
condition can be obtained by integrating (4.2): 

VthHth = ILth- (4.10) 

Once I ,  S ,  Cf, and 7th  are specified, (4.8)-(4.10) yield three relations for the three 

As can be seen from figure 6, the depth of the overland flow at threshold conditions 
Hth can be expected to be small compared to the elevation drop from the divide SLth 
required to realize threshold conditions. A more detailed numerical illustration of 
this is presented later. The implication is that a parameter y,  can be defined such that 

Q 1. (4.11) Hth y , = -  
SLth 

unknowns vth, Hth, and Lth. 

5. Non-dimensionalization 
The following normalizations are introduced : 

(% 0 )  = vrh (G, 6) 3 ( 5 . 1 ~ )  
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( 5 . 1 ~ )  

(5.ld) 

Note that x ,  y ,  and k are made dimensionless in terms of Lth, and that y = 1 precisely 
when the dimensioned distance downstream of the divide is equal to Lth, at which the 
base normal flow attains the threshold for erosion. In addition, a transverse phase 4 
is introduced such that 

(5.2) 
h 

kx = kjZ = 4. 
Several auxiliary dimensionless parameters will prove useful later. Let L'(x) denote 

the distance from the divide to a point where threshold conditions are reached. As 
shown in figure 6, the base normal value associated with this parameter is Lth. The 
deviation from this base normal value at any point x is defined in the following 
fashion: 

L' (X)  = Lth - AL'(X). (5.3) 
As illustrated in figure 3(b), AL'(x) is taken to be positive when L'(x) is less than 
Lth. The value of AL' at the centre of a trough was defined previously as A t t .  The 
above definition ensures that a minimum in L' is associated with a maximum in A". 
Dimensionless values of L', A /  (and thus A / , ) ,  and magnitude z b  of the boundary 
shear stress vector are defined as follows: 

(L', AL') = Lth (2, A?) , ( 5 . 4 ~ )  

z b  = z thzb .  (5.4b) 

After having introduced the above definitions, the hats are removed from the 
With them, (3.9), (3.10), and (3.3) take the 

A 

dimensionless forms for simplicity. 
following respective dimensionless forms : 

V 
dh ( u2 + v') l/' 

yF2 (ku$ + +) + y = 1 - h 

U 
ah ( u2 + v2) lI2 

y F ' ( k u $ + v $ ) + y k ~ = - u k s i n ~ -  h 

auh avh 
k - + - - - = l ,  

a4 aY 
where 

x = (u2 + v 2 )  ' I 2  h. 

(5.7) 

(5.8) 
The parameter E in the first two of these equations serves to scale the Reynolds stress 
terms; it is given by 

a 
f = -s2. 

C;12 
(5.9) 
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For thin overland flow over a vegetated surface, C;l2 can be expected to be of the 
order of 0.1 (e.g. Yoon & Wenzel 1971; Shen & Li 1973). Using the estimate of CI of 
(3.7), it is seen that E scales as S2, so that it is a small parameter in addition to tp, i.e. 

€4 1. (5.10) 

Equations (3.1 1)-(3.13) take the dimensionless forms 

u h d 4  = 2n. 
dY --A 

Equation (5.3) takes the dimensionless form 

d =  1 - A d .  

(5.1 l a )  

(5.1 1 b) 

( 5 . 1 1 ~ )  

(5.12) 

Equations (3.4), (3.6), (5.1), and (5.4) can be used to obtain the following dimen- 

(5.13) 

It is seen that in general the threshold condition q, = 1 is reached at the value y = d, 
where d is defined by the relation 

(u2+v2)  I = 1. (5.14) 

sionless form for the magnitude of the boundary shear stress vector: 
2 2  z b = u  + v .  

y = t  

This relation will later be used to determine characteristic wavenumber. 

6. Normal flow analysis 
The reason for the failure of the normal flow approximation used by Smith & 

Bretherton (1972) and others to select a finite wavelength can now be explained. This 
is first done in a linear context, and then in terms of the full nonlinear solutions to 
the governing equations. 

The normal flow approximation for the perturbed bed of figure 3(b) is obtained 
from (5.5) and (5.6) by dropping terms of O(v), O(E)  and the smaller order, i.e. 
backwater (inertia and pressure) and Reynolds stress terms : 

( u2 + v’) 1’2 
V, h 

0 = 1 -  

( u2 + v2) 112 
U .  

h 
O=-aksin$- 

The following perturbation expansion for small amplitude a is introduced to solve 
(5.7), (6.1), and (6.2) subject to the constraints (5.11): 

( 6 . 3 ~ )  

(6.3b) 

( 6 . 3 ~ )  

Carrying out the solution, the base normal flow is found at lowest order, as 
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At linear order in a, it is found that 

(6.5~) 

(6.5b) 

u1 = sin 4. (6.5~) 

It is furthermore found from (5.13) that to linear order in a, 

z b  = 1 + 2aU1 = 1 -/- ~ f k ‘ y ~ ’ ~  COS 4. (6.6) 

The reason for the failure of the normal flow approximation to select finite 
wavenumber can now be seen. From (6.6), it is apparent that Zb is maximized 
in troughs, e.g. 4 = 0. The value of wavenumber k associated with the maximum 
trough value of Q, is the one for which threshold condition would be reached in the 
shortest distance downstream of the divide. In the light of (2.3), this same wavenum- 
ber would be expected to cause the most rapid rate of erosion downstream of the 
threshold point. Maximizing the trough value of Zb, however, yields the result k = co, 
or vanishing wavelength. 

Whether viewed from the point of either classical linear stability analysis or the 
alternative threshold criterion offered here, the normal flow model combined with 
a purely erosional treatment of the topographic surface fails to select finite charac- 
teristic wavenumber. Equations (6.3)-(6.6) may likewise be used in the context of a 
transportational treatment of the topographic surface to yield the result of Smith & 
Bretherton (1972), in which again no finite characteristic wavelength is realized. The 
cause of the failure is evidently not rooted in the nature of the formulation of the 
Exner equation of sediment continuity, but rather in the normal flow approximation. 

The normal flow approximation interestingly allows exact nonlinear solution inde- 
pendent of the magnitude of a. This solution sheds further light on the failure of the 
approximation. Let (qx, qy) denote the vector of water discharge per unit width, given 
by 

( 4 x ,  q y )  = (uh, uh).  (6.7) 
Recalling that transverse phase 4 = kx, where both k and x are dimensionless, the 
equation of water continuity (5.7) can be written in the form 

The momentum balance equations (6.1) and (6.2) of the normal flow can be used 
with (6.7) to obtain the result 

U 1 

qx u kasinkx‘ 
-- q y - - = -  

Streamlines y = y(x) for the overland flow can be obtained from (6.9); 

9- 1 _ -  
dx ka sin kx ’ 

This equation integrates to yield 

1 1 - cos kx 
y = --~n ( ) + B , .  2ak2 l+coskx 

(6.10) 

(6.11) 
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Trough Ridge 

FIGURE 7. Illustration of a typical streamline from ridge to trough resulting from the nonlinear 
normal flow analysis. 

The constant of integration B, can be evaluated by considering the streamline passing 
through point ( x P , y p )  of figure 7. The streamline y ( x ; x , , y , )  passing through the 
point ( x p , y p )  is then found to take the form 

Now in general (6.8) integrates to yield 

(6.13) 

Here q denotes the vector (qx ,qy) ,  A, denotes a given area, S,  denotes the closed 
curve surrounding this area, and n denotes a unit outward normal vector to this area. 
In figure 7, the area A, ( x p , y p )  is defined to be that enclosed by the curve AOBP, i.e. 
the divide, the line x = 0 corresponding to the trough passing through the origin, the 
streamline passing through point ( x p , y p ) ,  and the line parallel to y = 0 connecting 
the trough to ( x p 7 y , ) .  Note that the streamline passing through ( x p , y , )  originates at 
point (xb,O) where in accordance with ( 5 . 1 1 )  0 < xb < n / k .  Carrying out the indicated 
integrals of (6.13) in accordance with (5,11), it is found that 

I” q y  ( X , Y P )  dx = A,, 

A ,  (xp7  yp> = xpyp + J y (x; x p 5  yp> dx. 

(6.14a) 

where 
X b  

(6.14b) 
XP 

Here the parameter x b  can be evaluated from (6.12) to yield 
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Taking the derivative of (6.14) with respect to x ,  it is found that 

N. Izumi and G.  Parker 

(6.16) 

The result of essential importance can now be obtained. Consider the streamwise 
discharge at the trough qy (O,yp)  obtained by setting x, = 0 in (6.16). It is seen from 
(6.15) and (6.16) that qy (0, y,) = 0 for y, = 0, i.e. at the divide, but suddenly jumps to 
infinity for any y ,  > 0. That is, the trough discharge jumps to infinity if any flow at all 
is allowed to gather from the surrounding basin. In the normal flow approximation, 
there is nothing to stop this overconcentration of flow. Loewenherz (1991) attempted 
to resolve this problem by adding an ad hoc 'smearing function'. Here the resolution 
of the issue will be sought with the aid of the terms neglected in making the normal 
flow approximation. 

7. Renormalization 
In $6, it was shown that the normal flow approximation results in the failure of finite 

wavelength selection both at the linear and nonlinear levels. This notwithstanding, it 
can be expected that both the backwater and Reynolds stress terms neglected in the 
normal flow approximation play a role in preventing infinite concentration of flow 
for basins of finite dimension. For example, the concentration of flow in the troughs 
should elevate depth there, creating a ridgeward pressure gradient that would act to 
resist further concentration. In addition, the transverse Reynolds stress is associated 
with turbulent eddy viscosity that should also act to prevent overconcentration 
especially for larger values of k (smaller wavelength). The small parameters y and E. 

can be used as measures of backwater and Reynolds effects, respectively. 
In order to see this, it is useful to renormalize (5.5)-(5.7) as follows: 

(7.la, b)  

The meaning of this renormalization can be clarified by reverting to dimensioned 
parameters, which are hereby denoted with the subscript d in order to distinguish 
them from dimensionless parameters from which the hats have been removed. From 
(7.1), (4.11) and (5.1), it is found that 

* x  
Y 

x = -  , k' = y k .  

The non-dimensionlization of $5, however, corresponds to 

1 
k d  = -k .  

Lth 

(7.2a, b )  

(7.3) 

While order-one values of k correspond to k d  - I/&, order-one values of k' 
correspond to the estimate k d  N s / f & h .  Insofar as Hth/(SLth) = y Q 1, it is seen that 
(7.1) allows for a reselection of large wavenumbers, i.e. transverse wavelengths that 
are short compared to Lth. It is shown below that this renormalization provides the 
key to the resolution of the problem posed by the failure of the naive analysis of $6 
to select finite wavelength. 
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Substituting (7.1) into (5.5)-(5.7) and (5.11), it is found that 

ah 
h 

U 
( u2 + v2) 

h 

auh avh 

84  a Y  
k’- + y- = y,  

(7.7a) 

(7.7b) 

(7.7c) 

It is seen from these equations that the parameters y and e scale the streamwise 
backwater terms and the transverse Reynolds stress terms, respectively. 

It is of value to view the base flow in terms of the renormalized parameters. This 
is obtained from the above equations by setting a = 0, from which it can be found 
that u = 0, v = vo(y), and h = h&). Equations (7.4) and (7.6) then reduce to 

- = 1. duo 
dY 

(7.9) 

The base normal flow is thus obtained strictly in the limit as w + 0, for which both 
streamwise backwater and Reynolds stress terms are seen to vanish. In analogy to 
(6.4), the base normal solution is found to be 

(7.10a, b)  

Imposition of (5.14) leads to the expected condition for the threshold of motion in 
the case of the base normal flow; 

G = 1. (7.11) 

Ubn = Y 1/3 3 hbn = y 213. 

8. Solution 
A perturbation technique using a,y, and E as small parameters is used here to 

solve (7.4)-(7.7). While y and E are characteristic parameters of each configuration, a 
is chosen to be arbitrarily small. The following composite expansions are introduced 
in order to perform a linear analysis in a: 

2.4 = aul(Y, 4), (8.la) 
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(8.1b) 
(8.1~) 

where 

and 

ul(y, (6) = u d y ,  (6) + ~ u l l o ( y ?  4)  + E u ~ o ~ ( ~ ~  (6) + ' ' ' 9 ( 8 . 3 ~ )  
Ul(Y, (6) = ~loo(Y, (6) + YUllO(Y, 4) + EUlOl(Y, (6) + . . . 7  (8.3b) 
hl(Y, (6) = hloo(Y, (6) + vh11o(y, (6) + rhlol(Y, (6) + . . . . ( 8 . 3 ~ )  

Note that the subscript 0 in (8.1) and (8.2) corresponds to the base flow, i.e. the limit 
as a tends to zero. Likewise, the subscript 000 in (8.2) corresponds to the base normal 
flow, i.e. the limit as a,y, and E all tend to zero. A constraint on the validity of 
the expansion is that a2 < max ( y2 , e2 ) ,  a condition that is consistent with a linear 
analysis for infinitesimal a. 

The terms of the base solution in (8.1) and (8.2) that differ from the base normal 
solution are independent of the perturbation, and thus are not dependent upon x 
or k'. As a result, they simply alter the position at which the base flow attains the 
threshold condition by a constant value about the base normal value t' = 1, and play 
no role in determining the selection of characteristic wavenumber. For this reason, it 
turns out to be unnecessary to carry the expansion of the base flow to O(u). 

Substituting (8.1)-(8.3) into (7.4)-(7.7) and carrying out the solution, it is found 
that 

and 
p / 3  

u 1 =  -I/)--- sin (6 + o (y2,  6') , 
2k' 

( 8 . 4 ~ )  

(8.4b) 

( 8 . 5 ~ )  

- e y y ]  cos (6 + 0 (tp2, e2)  , (8.5b) 
9 

( 8 . 5 ~ )  

The parameter At' defined by (5.12) can be determined by substituting the above 

(8.6) 

expressions into (5.14) and expanding. This results in 

A t  = At'o + aAt'1, 

where 
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1.52 

1 S O  

4 

1.48 

1.46 
0 .01 0.1 I 10 100 

k'( = 2n(H,/S)/h) 

F~GURE 8. Plot of At1 versus k' for the case F = 0.05 and E = 0.0001. Curves are 
shown for w = 0.0OOO1,0.OOO1,0.001. 

and 

(8.8) 1 C O S ~ .  

In figure 8, the trough value A t ,  corresponding to the expression A t  evaluated at 
4 = 0 is plotted versus wavenumber k' for the case F = 0.5, E = 0.0001, and 
the values v = 0.00001, 0.0001, and 0.001. The curves demonstrate the existence 
of a characteristic wavenumber k,' at which A t t  is maximized. This results from a 
combination of backwater and Reynolds stress effects. In (8.8), the effect of v upon 
A t t  is to favour larger values of k' (smaller wavenumber), and the effect of E is to 
favour smaller values of k' (larger wavenumber). 

An expression for characteristic wavenumber can now be derived with the use of 
(2.4). A perusal of (8.6)-(8.8) indicates that A t t  = At14=o is maximized when Atl ,  is 
maximized, where Atl t  is obtained from (8.8) by setting 4 = 0: 

Performing the maximization, it is found that characteristic wavenumber kf is given 
by the simple expression 

(8.10) 

This relation can be reduced with the aid of (3.9,  (3.6), (4.8), (4.9), (4.10), (4.11), (5.1), 
and (5.9) the following form for dimensioned characteristic wavelength : 

(8.11) 
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In the above relation, ,Idc denotes the dimensioned characteristic wavelength, and the 
dimensioned critical shear velocity &th is defined by the relation 

p%,h 2 -  - Z t h .  (8.12) 

9. Discussion and conclusions 
It is of value to apply (8.11) to a specific case. To this end, the coefficient u 

in the relation (3.5) is evaluated with the aid of (3.7), i.e. set equal to 0.2. The 
friction coefficient C, for overland sheet flow can be expected to be rather higher 
than that for channel flow; here a value of 0.01 is assumed. Various estimates 
are available for the critical shear stress Tlh ,  or alternatively critical shear velocity 
u * ~ ~ ,  for cohesive sediments in general (e.g. Vanoni 1975; Raudkivi 1976) and for 
vegetated soil surfaces in particular (e.g. Dietrich et al. 1993). These values typically 
range from 0.02 to 0.2 m s-'. Here a value of U*th of 0.1 m s-l is adopted as 
representative. 

The present analysis cannot predict the fine structure of the drainage basins of 
figures 1 and 2 as they appear in their present, fully dissected states. Rather, it 
might be thought to apply to some antecedent undissected state consisting of a 
flat but tilted surface with a much lower slope than that prevailing at the present 
channel heads shown in figures 1 and 2. With this in mind, a sample value of 
slope S of 0.01 is used here. In addition, a fairly intense rainfall of 100 mm hr-' is 
assumed. 

Used in conjunction with (4.8)-(4. lo), the above values yield the following predic- 
tions for the base flow: a threshold flow velocity Vth of 1.00 m s-l, a threshold depth 
Hth of 0.102 m, and a distance Lth from divide to the first point at which threshold 
conditions are reached of 3670 m. The parameters y and f are found to take the 
value 2.78 x respectively. As expected, both these values are 
small. 

Equation (8.11) yields a predicted value of characteristic wavelength Adc of 33.1 m. 
This value is somewhat smaller than, but of the same order of magnitude as, the 
spacing between channel heads found in the Hay Press and Sausalito tributaries of 
Tennessee Valley, California by Montgomery & Dietrich (1989), and in the basins at 
Rock Creek, Oregon, Southern Sierra, California, and San Dimas, California studied 
by Dietrich & Dunne (1993). This encouraging result nevertheless requires some 
interpretation. 

Figure 9 illustrates how the flat but tilted plateau assumed here might evolve into 
a mature drainage basin. Channelization first begins rather far down the slope, with 
a spacing that might be predicted by the present model. The channel heads then 
migrate upstream by the process of head cutting at the same time as they incise. The 
process of incision can be expected to be subject to the controls of regolith formation, 
tectonic uplift or subsidence, and climate. As it progresses, some incipient basins can 
be expected to capture their neighbours, so that basin spacing thins out. On the other 
hand, as the original tilted but flat plateau evolves toward an overall upward concave 
terrain with steepened headwaters, lateral sub-basins can be expected to evolve. As 
it reaches some degree of morphological maturity, the basin can be expected to 
look quite different from the hypothesized original configuration of figure 9. This 
notwithstanding, it is reasonable to expect that the finest scale of channel spacing 
associated with the final state scales at least approximately with that predicted from 
the present analysis. 

and 2.00 x 
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FIGURE 9. Schematic diagram illustrating the hypothesized pattern of evolution from the state of 
incipient channelization discribed here to a more mature geomorphic state. 

The full evolution to a geomorphically mature state cannot be predicted with 
the present model, which does not attempt to include the complexities of the 
models of Willgoose et al. (1989, 1991a, b)  and Howard (1994). For example, 
the rounding of ridges between adjacent basins and along divides is thought to be 
associated with a diffusive mechanism associated with rainsplash, a process that is 
not even considered here. The suggestion is rather that the flow model presented 
here, which is capable of predicting a characteristic scale associated with incipi- 
ent channelization, is probably a better place to start in constructing a full model 
of drainage basin evolution than the normal flow model. The incorporation of 
some version of the flow model presented here into the more general framework of 
Howard (1994), for example, might be expected to lead to results of considerable 
interest. 

The implication is that the most appropriate avenue for further progress with the 
model involves numerical computations. Indeed, the present analysis could have been 
performed completely by means of a full numerical treatment of two-dimensional 
shallow water flow over a corrugated bed. Such an analysis would have obscured, 
however, the mechanistic basis for wavelength selection described here. 

Several discussions with William Dietrich proved crucial to the formulation of the 
present model. Discussions with Alan Howard, who made a considerable body of 
unpublished information available to us, James Kirchner and Garry Willgoose are 
also gratefully acknowledged. James Kirchner piloted the airplane from which the 
photograph of figure 2 was taken. This research was funded by the National Science 
Foundation (grant no. CTS-9207882) and the Graduate School of the University of 
Minnesota (grant-in-aid of research, artistry and scholarship). 
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